Feature-constrained Texturing System for 3D
Models

Tong-Yee Lee and Shaur-Uei Yan

Department of Computer Science and Information Engineering,
National Cheng-Kung University, Tainan, Taiwan, Republic of China
email:tonylee@mail .ncku.edu.tw

Abstract. Significant number of parameterization methods has been
proposed to perform good quality of texturing 3D models. However, most
methods are hard to be extended for handling the texture mapping with
constraints. In this paper, we develop a new algorithm to achieve the
matching of the features between the model and texture image. To min-
imize the distortion artifacts from the matching algorithm, a L2 stretch
metric is also applied to optimize the u,v map defined in parameteriza-
tion domain.

1 Introduction

In computer graphics, texture mapping is a very common technique to enhance
the visualization of 3D meshes. Texture mapping adds the detail of pictures to
the 3D meshes and let the 3D meshes looks more vividly. Surface parameteri-
zation is a common solution to the texture mapping problem. Parameterization
commonly maps 3D meshes to a 2D domain that defines the (u, v) texture coor-
dinates in parameterization domain. There is no isometric parameterization to
map a general surface patch to a plane [1] and many previous methods [2-10, 16,
21] have been proposed to minimize various kind of distortion for achieving an ac-
ceptable visual effect. Most of them do not take feature matching into account.
They only provide general solutions to texture mapping without constraints.
However, without the correspondence of features, a 3D model with texture coor-
dinates would look strange as shown in Figure 1. For example, the eyes on both
texture and model do not match. Therefore, we need to find a method to deal
with this constraint issue.

2 Related Work

Many papers have addressed issues in surface parameterization. Surface parame-
terization can be used for texture mapping. Tutte [15] introduces the barycentric
map which guarantees the existence of a one-to-one mapping, i.e., foldover free,
for parameterizing a model into the u,v domain. Eck et al. [4] minimize the
harmonic energy to approximate the harmonic map and this method can be
solved efficiently by a linear sparse matrix. Floater [16] develops the mean value

Fig. 1. Texture mapping using a naive non-constrained surface parameterization

coordinates to mimic the discrete harmonic map and this mapping is bijective.
Hormann and Greiner [6] derive a formula that measures the distortion of the pa-
rameterization and is also invariant for affine transformation. This method does
not require the boundary vertices to be fixed on the convex 2D polygon. How-
ever, the optimization of solution is slow due to the non-linear property. Sander
et al. [3] define a geometric stretch metric for surface parameterization. This
approach uses a relaxation approach similar to MIPS [6] to iteratively flatten
3D surfaces. Some papers address the feature correspondence problem between
model and texture coordinates. Such topic is called constrained texture map-
ping. Levy [17] minimizes the distortion and matches features in a least square
sense. This approach doesn’t exactly match the constrained positions of features
and may produce folded triangles in texture domain. Eckstein et al. [18] uses
the graph theorem to meet the position constraints, but the method seems too
complicated to handle any general case. Kraevoy et al. [19] describes a match-
ing algorithm to align the position of features. This method uses a brute-force
approach to satisfy the constraints.

3 Parameterization with feature points

In this paper, we develop a novel approach to texture mapping with constraints.
Initially, a user only needs to specify several feature correspondences between the
model and the texture and then the algorithm would automatically do anything
without user-interaction.

3.1 Initial parameterization

We concentrate the feature-correspondence problem in this paper. The topology
of the input 3D mesh is homeomorphic to a disk. If objects are not belonging to
this type, it is easy to use extra cutting to form an open disk-like surface, i.e.,
surface with a boundary [10]. Then, we can use any parameterization method
mentioned in the related work. At the current implementation, we adopt the
mean value coordinates [16] with a convex boundary in uv domain (see Figure
2 and Figure 3 (c)). Figure 2 shows the weights of the mean value coordinates
for each vertex of the model. If the feature points are specified on the border
of models, a virtual boundary (Figure 3(d)) can be added to the outside of the
parameterized surface boundary to keep all features in the interior of the u,v
map. This arrangement can facilitate our method described in Section 3.2.

o tan(d;;/2) + tan(v,;/2)
Y [lv; = will

Fig. 2. v; is the one-ring neighbor of v; for triangulation mesh

3.2 Feature matching using a partitioning approach

This section is the core of this paper. The matching idea is mainly based on the
procedure of the recursive partitioning in uv domain. In our setup, all compu-
tation of the matching stage is performed between the uv map and the texture.
After initial parameterization, each vertex of the 3D model has an initial (u, v)
coordinate. But the feature vertices don’t be matched with corresponding posi-
tions on the texture. We wrap the feature vertices to their desired positions by
the partitioning approach.

Partitioning. For each partitioning step, we can group the feature vertices
into two disjoint sets as follows. First, feature vertices are sorted by the u (or v)
coordinate on the texture domain and then the median w,, (or v,,) is computed.
Let the line segment L;: © = u,, (or y = v,,) be the partitioning line on the
texture domain to separate the feature vertices into two groups G1 and G2 (see
Figure 4 (a)). Then we perform the path finding algorithm in the next section
to find a path P to isolate the counterparts of G1 and G2 in the uv domain
(Figure 4 (b)). A path P has the same starting and ending positions as those
of the line L;. Then, after partitioning by a path P, we can have two disjoint
sub-patches SP1 and SP2 in the uv domain. In the next step, we align the path
P with the line L, i.e., straightening the path P, and then re-parameterize the
sub-patches SP1 and SP2 (see Figure 4 (c)). A partitioning step ends. We will
iteratively above partitioning tasks on the uv map until each patch contains only

(d)

Fig. 3. (a) and (b): feature correspondence between a 3D model and a texture im-
age; (c) and (d): the uv map of the mean value coordinates with and without virtual
boundary

start

Gl
®

end N
Texture uv map uv map

(@) ®) ©

Fig. 4. Each partitioning step determines two separate groups of features in texture
and uv domains.

one feature point, say f. Finally, we will align each feature f in uv domain with
its counterpart f’ in the texture domain by a quad-partitioning of each patch as
shown in Figure 5. For this purpose, we move a vertex f to a new position f’, i.e.,
correct corresponding position in texture domain. Then, we straighten all paths
connecting f and four corners and re-parameterize these four sub-patches.

Finding a partitioning path in uv domain. First, we apply a constrained
Delaunay triangulation to the u,v map considering the feature vertices, S, and E
(Figure 6 (b)). Both S and E are the starting and ending points for a partitioning
path. Second, we compute the minimal spanning trees (MST) for the group G1
and G2 (Figure 6 (¢)), respectively. If a MST does not exist, we will apply 1-to-4
subdivision on this triangulation map to have additional paths for finding MSTs.
After finding MSTs, we find all edges, i.e., marked by X, in which one of the end
points belongs to G1 and the other belongs to G2. When connecting the middle
points of these edges, we can form a connected path P like Figure 6 (d). Finally,
the starting and ending points of P connect to S and E by the shortest paths L1
and L2 to determine the final partitioning path. This partitioning path divides
features into two disjoint groups in uv domain.

3.3 UV optimization

After matching features, the uv map is distorted to some extent. The uv op-
timization is a process to improve the uv map as the smoothing stage in [19].

Fig. 5.

s N N N
., MST2 a
.1
3
G1 G2 G G2 Gc1 xP G2
. . X /4 2
E
1 L £ £
(a) texture (b) uv map ©) (d)

Fig. 6. Finding a partitioning path in u,v domain

It is an iterative version of parameterization. It moves each vertex except for
features within the range of one ring at each iteration to gradually minimize the
distortion of uv map. We use the L2 stretch metric [3] instead of the harmonic
map in [19]. In our experiment, the L2 stretch metric generally produces better
results than the harmonic map (Figure 7).

4 Preliminary results

Fig. 7. Smoothing u,v map. (a):original texture, (b):smoothed with a harmonic map
and (c):smoothed with L2 stretch metric.

Fig. 8. Texturing an old man with a bear image.

We demonstrate some preliminary results using the proposed method. Figure
7 gives the comparison between harmonic map and L2 stretch metric for the
smoothing the u,v map. In Figure 7, (c) yields better visual effect than (b).

In Figure 8, the positions of corresponding features for an old man and a bear
image are very different. The proposed method produces a not bad result. Note
that in this example, we specify the features on the border of texture image,
therefore we need to add virtual boundary for the u,v map. Finally, we show
another interesting example in Figure 9. In this case, we do not require virtual
boundary. We perform the experiments on a PC with Pen-tium IV 2.4 GHz and
512 MB RAM. On the average, it takes a minute to finish a texture mapping for
these examples.

Fig. 9. Texturing a monkey face with a lion image.

5 Conclusion

In this paper, we have presented a new algorithm for the constrained texture
mapping. Preliminary results show that this new method is very promising. We
can successfully handle texture mapping with constraints well. In future, there
are many works to be done. For example, there is also a need for matching
correspondence in 3D metamorphosis application and consistent surface param-
eterization. We will plan to explore the possibility of our approach to these
important applications. Furthermore, in the current method, we need many re-
parameterizations of the patches and therefore the computation cost can be ex-
pensive as the features are increased drastically. We would like to find a better
approach to reduce the number of re-parameterization in near future. Another
interesting and our ongoing research is to compute progressive texture transfer
between two models in metamorphosis applications [22, 23].

Acknowledgement. This paper is supported by the National Science Coun-
cil, Taiwan, Republic of China, under contract No. NSC-93-2213-E-006-026 and
NSC-93-2213-E-006-060.

References

1. L. V. Ahlfors and L. Sario ; Riemann Surfaces ; Princeton University Press, Prince-
ton, New Jersey, 1960

2. J. Maillot, H. Yahia, and A. Verroust ; Interactive texture mapping ; Proceedings
of SIGGRAPH, 1993, pp. 27-34

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. Sander, J. Snyder, S. Gortler and H. Hoppe ; Texture mapping progressive meshes
; Proceedings of SIGGRAPH, 2001, pp. 409-416

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle ;
Multiresolution analysis of arbitrary meshes ; Proceedings of SIGGRAPH, 1995,
pp. 173-182

. M. S. Floater ; Parametrization and smooth approzimation of surface triangulations

; Computer Aided Geometric Design, 14(3):231-250, 1997

. K. Hormann and G. Greiner ; Mips: an efficient global parameterization method

; Curve and Surface Design: St. Malo 1999, pages 153-162, Vanderbilt University
Press, 2000

. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski ; Bounded-distortion Piece-

wise Mesh Parameterization ; IEEE Visualization, 2002, pp. 355-362

. G. Zigelman, R. Kimmel, and N. Kiryati ; Tezture mapping using surface flattening

via multidimensional scaling ; IEEE Transactions on Visualization and Computer
Graphics, Vol. 8, No. 2, pp. 198-207, 2002

. G. Piponi and D. Borshukov ; Seamless Texture Mapping of Subdivision Surfaces

by Model Pelting and Texture Blending ; Proceedings of SIGGRAPH, 2000, pp.
471-478

X. Gu, S. J. Gortler, and H. Hoppe ; Geometry Images ; Proceedings of SIG-
GRAPH, 2002, pp. 355-361

C. Gotsman, X. Gu, and A. Sheffer ; Fundamentals of Spherical Parameterization
for 3D Meshes ; Proceedings of SIGGRAPH, 2003, pp. 358-363

T. Y. Lee and P. H. Huang ; Fast and Institutive Polyhedra Morphing Using SMCC
Mesh Merging Scheme ; IEEE Transactions on Visualization and Computer Graph-
ics, Vol. 9, No. 1, pp. 85-98, 2003

Sheffer and E. D. Sturler ; Smoothing an Overlay Grid to Minimize Linear Dis-
tortion in Texture Mapping ; ACM Transactions on Graphics, Vol. 21, Issue 4, pp.
874-890, 2002

U. Pinkall and K. Polthier ; Computing discrete minimal surfaces and their conju-
gates ; Experimental Mathematics, 2(1):15-36, 1993

W. Tutte ; Convex representation of graphs ; In Proc. London Math. Soc., volume
10, 1960

M. S. Floater ; Mean wvalue coordinates ; Computer Aided Geometric Design,
20(1):19-27, 2003

B. Levy ; Constrained Texture Mapping for Polygon Meshes ; ACM SIGGRAPG
2001, 417-424

I. Eckstein, V. Surazhsky, and C. Gotsman ; Texture Mapping with Hard Con-
straints ; Computer Graphics Forum 20, 3, 95-104

V. Kraevoy, A. Sheffer, and C. Gotsman ; Matchmaker: constructing constrained
texture maps ; ACM SIGGRAPH 2003, 326-333

J. Pach and R. Wenger ; Embedding planar graphs with fized vertex locations ; Pro-
ceedings of Graph drawing '98. Lecture Notes in Computer Science 1547, Springer-
Verlag, 1998, 263-274

Tong-Yee Lee and Shaur-Uei Yan ; Texture Mapping on Arbitrary 3D Surfaces ;
Lecture Notes on Computer Science 3024, Springer-Verlag, pp. 721-730, 2004
Tong-Yee Lee and P.H Huang ; Fast and Institutive Polyhedra Morphing Using
SMCC Mesh Merging Scheme ; IEEE Transactions on Visualization and Computer
Graphics, Vol. 9, No. 1, pp. 85-98, 2003

Chao-Hung Lin and Tong-Yee Lee ; Metamorphosis of 8D Polyhedral Models Using
Progressive Connectivity Transformations ; IEEE Transactions on Visualization
and Computer Graphics, Jan./Feb. Issue, Vol. 11, No.1, pp. 2-12, 2005

Real-time 3D Artistic Rendering System

Tong-Yee Lee, Shaur-Uei Yan, Yong-Nien Chen, Ming-Te Chi

Department of Computer Science and Information Engineering,
National Cheng-Kung University, Tainan, Taiwan, Republic of China
email:tonylee@mail .ncku.edu. tw

Abstract. This paper presents an artistic rendering system for gener-
ating 3D images of Chinese paintings using graphics hardware. The user
can adjust suitable parameters flexibly to generate different brush styles
as his/her hobby, and see rendering results in real time. In this system,
we propose a hardware-accelerated method to draw Chinese painting
strokes efficiently along visible silhouettes. Three-dimensional texture
and multi-texture from normal graphics hardware is used to speed up
generating various brushes with Chinese painting stylized strokes. The
features of the traditional Chinese painting such as ink diffusion and
moisture effects are simulated. Several examples of aesthetically pleasing
Chinese-paintings rendered from 3D models are demonstrated using the
proposed method.

" & o y ~
SNV T o T
J /J i M
J). / Ry / z
N/ ™ N 4 31)
J At JSR 2=
(a) (b) (d) (e)

Fig. 1. System overview. (a) Input model, (b) visibility testing, (c) visible segment
linking, (d) stroke placement and (e) interior shading. In (c), we color each linked
segment.

1 Introduction

In the past, most non-photo-realistic rendering (NPR) researches focus on the
western painting styles such as pen-and-ink, watercolor, hatching and so on.
However, few works in NPR are about Chinese paintings and most of them focus
on simulating delicate effects of brush, black ink and papers. Furthermore, most
of them are 2D Chinese drawing works and computationally expensive for real-
time applications. These researches are interested in its simulated quality rather
than in its processing time. However, when generating the scene of Chinese

painting style in games or virtual environment, the real-time performance is
required and we cannot use these previous works directly. In this paper, we
present a real time NPR system for generating 3D Chinese paintings. The system
pipeline consists of four stages and it is illustrated in Fig. 1.

2 Related Work

Strassmann models hairy brushes in his 2D oriental black-ink painting system [1].
This work represents each stroke with a cubic spline and renders the stroke using
polygons with texture. Lee [2] designs a 3D brush model with elastic bristles
that respond elastically to the force exerted by an artist against the paper. To
simulate realistic diffuse effects of blank-ink paintings, Guo et al. consider the
sorbency of paper, the liquid density and flow [3]. Zhang et al. [4] propose to use
cellular automation-based simulation of ink behavior to render 3D trees in sumie
style. Way et al [5] propose a method of synthesizing rock texture in Chinese
landscape painting. Later, they further develop methods to simulate 3D Chinese
painting trees using silhouettes with texture strokes [6]. Chan et al. [7] exploit
existing software packages such as Maya and RenderMan to create 3D Chinese
painting animation. Chu et al. [8] develop a system utilizing Haptic input device
to track 3D brush movement to give more accurate brush simulation. Yeh et al.
[9] propose a set of algorithms to render 3D animal models in Chinese painting
style. To shade the interiors of animals, several basic image processing techniques
such as color quantization, ink diffusion and box filtering are used.

3 Stylizing Silhouettes with Brush Strokes

3.1 Stroke Paths and Widths Generation

The idea for drawing view-dependent silhouettes of 3D model with stylized
strokes is popular in NPR. We adopt Isenberg et al.” approach [10] to find visible
silhouettes and concatenate silhouette segments into long stroke paths. Before
applying stylizations onto stroke paths, control points along paths need to be
interpolated using cubic spline to smooth the curvature of stroke paths. To make
a stylized stroke path, we need to grow various widths at control points. In tra-
ditional Chinese painting, the brush width starts with thin stroke and gradually
grows to thick stroke, and turns back to thin stroke as the brush stroke pro-
gresses. Yeh et al. [9] assign stroke width based on the order of control points
only and potentially generate less smooth transition between different brush
stroke widths when a long brush path contains fewer control points. To solve
this problem, we consider distance between control points as another parameter
to control the width of brush stroke. We use Eq. (1) and (2) to compute the
width. In Eq. (1), ncp represents the total number of control points on a given
stroke path. Eq. (2) represents the width of the stroke at a given control point i,
which is 0 at both starting and ending points of the brush path. Eq. (1) returns
the width to add or to subtract given the condition at the ith control point,

where Vlengthli] is distance between the ith and the (i-1)th control points and
width_step is a predetermined width step value. We demonstrate an example to
compare [9] and our approach in Fig. 2. The proposed approach yields better
visual stroke appearance than [9].

) 1
+ VLength[i] = width _step, if i< EXMP and width[i] < MAX_WIDTH

add[i] = {—VLengthl[i]* width _step, if i2 %chp and width[i] 20

0, else
(1)

0 Jf i=0 or i=ncp

widihlr] = {widzh[i —1]+add[i] .else 2)

3.2 Brush-Strokes in Chinese Painting Style

A brush consists of many bristles. In a microscopic view, when a single bristle
draws on the paper, the effects it can produce different ink shades such are
dark, light, dry and wet when ink diluted with water; with different pressure,
direction in brush stroke, different ink tones can produce millions of variations
of touches on the paper. Various brush-strokes are usually used to represent
different texture of the subjects in Chinese painting. To simulate different shades
of ink, we define the term ”pattern” to refer to the ink traces on the paper left
by a bristle. The pattern setup is illustrated in Fig. 3 by combining an intensity
map and an opacity (i.e., alpha) map. We can use 2D texture to store each
pattern. When painting an absorbent paper, an artist can control the water
content in the brush to make ink look sear, soggy or wet. The opacity map is
used to control water content and therefore it is called a moisture map, too. The
intensity map is used to control ink shades such as dark and light. With different
combinations of bristle patterns, different style of brush strokes can be produced;
Fig. 4 shows example of our simulated brush strokes in the style of flying-white
(fei-bei) technique and slanted brush technique in Chinese painting. To efficiently
generate the brush stroke patterns in real time, the hardware-accelerated 3D
volume texture and multi-texture techniques are used in our system. Intensity
changes are mapped to a 3D texture level to encode intensity change into the

f\\ =N

Do B
N\

Ty
(a)

(b)

Fig. 2. Different stroke widths generated by different methods. Left: stroke generated
by [9] Right: stroke generated by our system.

P -@x@ P =0O)x@ ® =@x©
Dark shade Light Shade Dry shade

Fig. 3. Brush stroke setup on paper

Intensity Moisture 2 """"
map map ‘

:
Intensity
o ool

Light stroke Dark stroke

(a) (b) (©)

Fig. 4. (a) flying-white (fei-bei) brush path (Left). (b) slanted brush stroke path. (c)
3D texture representing intensity and moisture maps for brush strokes.

third dimension of 3D texture. Moisture changes are also mapped to another 3D
texture level to account the moisture change in the third dimension as well. See
figure 4(c) for a visual representation of this idea. The user just needs to prepare
two sets of predetermined intensity and moisture maps. Then, we load these two
sets into 3D volume texture. At running time, when an arbitrary intensity value
is specified, corresponding 2D texture pattern can be interpolated efficiently from
two neighboring intensity value automatically by the graphics hardware, thus a
intensity map of the brush at the given intensity value is obtained. Similarly,
the moisture map of a given moisture value can be computed in this hardware
accelerated manner. With OpenGL extension [11], it allows us to enable multi-
texture technique to combine the two maps into a new brush pattern. In this
way, the system can deliver brush pattern with desired intensity and moisture
value very fast using hardware accelerated 3D volume texture and multi-texture
techniques. Next, we will give details about how to provide both intensity and
moisture value at running time.

In Section 3.1, control points along every stroke path contain its original 3D
coordinates and normal vector. Given a light source, we can compute a light
vector from a control point to a light source. The intensity value of each control
point is computed by the dot product of these two vectors and this dot product is
normalized to the range of (0,1), so that all paths have different intensity values
and are influenced by the lighting condition; distribution of bright and dark
stroke can be gathered by giving different configuration to lighting as illustrated
in Fig. 5. When an artist actually draws on paper, the moisture of the brush
changes from wet to dry from the beginning of a stroke to the end of it. In order to
simulate this effect, the control points in the beginning of each path are assigned a
predetermined amount of moisture, and the moisture level in consequent control
points drops as the distance from the first control point increases. See Fig. 5(c)
for an example of the moisture effect. After the intensity and moisture value are

‘\‘ ,:\\\"—‘ ™~
N = ~—

2] >

(a) (b) (©)

Fig.5. By placing light, stroke brightness distribution can be controlled(Middle).
Brush moisture effect(Left).

found at each point along a brush path, we can use them as the third dimension of
3D volume texture to fast compute corresponding intensity and moisture stroke
”pattern”.

4 Interior Shading

In this section, we present a method to draw colors in the interior area of models.
The goal of this method is to fast simulate ink color change from dark to light
like ink diffusion in Chinese painting. We use Eq. (3) to simulate this change in
the interior of models.
.8

Opacity= A* cos (W) (3)
Where 6 is the angle between a vertex normal and a light vector from a vertex to
light, A, n and W are constants to control shape of this function. To implement
this simulation, the fragment shader provided by Nvidia’s CG language [12]
is used to do per pixel opacity value calculation using Eq. (3). By using the
calculated opacity values and user-defined ink intensity for shading the object,
the change of brightness can be seen after we enable blending. The brightness
change can be seen as ink diffusion in Chinese ink painting. To avoid the dull
appearance of uniform color distribution, noise functions such as Perlin noise
can be used to add some randomness. In the next Section, several interesting
results will be demonstrated to verify the proposed method for interior shading.
In contrast to other ink diffusion approach [3, 4], the proposed method computes
very fast but it yields not bad results.

5 Experimental Results

The experimental setup in this paper is a program written in C++ and OpenGL
using Microsoft Visual C++ 6.0 compiler running on an Intel Pentium 4 R
2.2Ghz machine with Microsoft Windows 2000. Graphics card is Nvidia GeForce
FX5900 with 256MB frame buffer. In Table 1, three models are used to test ren-
dering speed measured in frame per second (fps) at 800x 600 screen resolutions.
Because our system is implemented in four different stages, we list the frame
rate (i.e., fps) at different stages. We can see the current performance bottleneck
is limited by the stroke placement stage. The rendering performance we achieve
is fast enough for user interaction in real time. Fig. 6 shows rendered results for
Table 1. More results are demonstrated in Fig. 7.

Models Teapot Sparrow Horse
Num of vertices 530 4502 6918
Num of faces 992 9184 13832
Visibility test 71.8 fps 54.9 fps 48.6 fps
Path linking 70.5 fps 51.4 fps 43.9 fps
Stroke placement 58.1 fps 20.9 fps 20.4 fps
Interior shading 54.0 fps 20.2 fps 20.2 tps

Table 1. Performance breakdown for Fig. 6.

\/

N

Vi

Fig. 6. We show three rendered results used in Table 1.

6 Conclusion and Future Work

This paper presents a real-time NPR rendering system to generate traditional
Chinese ink paintings for 3D models. The proposed method is accelerated by
the normal graphics hardware. This method consists of four main steps: 1) vis-
ibility testing, 2) path linking, 3) stroke placement and 4) interior shading. For
the stroke placement, the 3D volume texture and multi-texture techniques are
used to fast compute ink and moisture information. We also attempt to simu-
late ink diffusion effect to paint the interiors of the models. As a result, many
aesthetically pleasing Chinese-paintings rendered in real-time from 3D models
are demonstrated using the proposed method. There are many possible future
work can be further explored based on our current work. For example, we plan
to consider motion issue in NPR such as sparrow jumping or waving its wings
created by using bone and skin deformation techniques. In this situation, we
need to consider the stroke coherence problem. Without treating well this issue,
it is very easy to create popping effect during animation or deformation. An-

Fig. 7. More rendered results.

other our research direction is to how to express model metamorphosis [13, 14]
or human face [15] in Chinese painting style or in western painting style [16].

Acknowledgement. This paper is supported by the National Science Coun-
cil, Taiwan, Republic of China, under contract No. NSC-93-2213-E-006-026 and
NSC-93-2213-E-006-060.

References

1. Strassmann, S., "Hairy brushes,” Proc. SIGGRAPH 86, 20(4): 225-232, August
1986.

2. J. Lee, ”Simulating oriental black-ink painting,” Computer Graphics and Applica-
tions, IEEE, vol. 19(3), pp. 74-81, May-June 1999.

3. Q. Guo and T. Kunii, ”Modeling the Diffuse Painting of Sumie’,” Modeling in
Computer Graphics (Proc. IFIP WG5.10), T. Kunii, ed., Springer-Verlag, Tokyo,
1991,pp. 329-338.

4. Q. Zhang, Y. Sato, J. Takahashi, K. Muraoka and N. Chiba, ”Simple cellular
automation-based simulation of ink behavior and its application to Suibokuga-like
3D rendering of trees,” Journal of Visualization and Computer Animation, 1999.

5. Way, D. L., and Shih, Z. C. ” The Synthesis of Rock Texture in Chinese Landscape
Painting,” Computer Graphics Forum, Vol. 20, No. 3, pp. C123-C131, 2001.

6. Way, D. L., Lin, Y. R. and Shih, Z. C. ”The Synthesis of Trees Chinese Landscape
Painting Using Silhouette and Texture Strokes.” Journal of WSCG, Vol. 10, No.
2, pp.499-506, 2002.

7. C. Chan, E. Akleman, and J. Chen, ” Two methods for creating Chinese painting,”
Proceedings.10th Pacific Conference on, October 2002, pp. 403 - 412.

8. N. S.-H. Chu and C.-L. Tai, ”An efficient brush model for physically based 3d
painting,” in Proceedings of 10th Pacific Conference on Computer Graphics and
Applications, 2002, 2002, pp. 413-421.

9. Jun-Wei Yeh, Ming Ouhyoung, ” Non-Photorealistic Rendering in Chinese Painting
of Animals,” Journal of System Simulation, Vol. 14, No. 6, 2002, pp. 1220-1224.

10. T. Isenberg, N. Halper, and T. Strothotte, ”Stylizing silhouettes at interactive
rates: From silhouette edges to silhouette strokes,” in Computer Graphics Forum,
Proceedings of Eurographics 2002, vol. 21, September 2002, pp. 249-258.

11. http://www.opengl.org

12. http://developer.nvidia.com/page/cg_main.html

13. Tong-Yee Lee, P.H Huang, "Fast and Institutive Polyhedra Morphing Using
SMCC Mesh Merging Scheme,” IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 9, No. 1, pp. 85-98, 2003.

14. Chao-Hung Lin, Tong-Yee Lee, ”Metamorphosis of 3D Polyhedral Models Using
Progressive Connectivity Transformations,” IEEE Transactions on Visualization
and Computer Graphics, Jan./Feb. Issue, Vol. 11, No.1, pp. 2-12, 2005

15. Tong-Yee Lee, Ping-Hsien Lin, Tz-Hsien Yang, " Photo-realistic 3D Head Modeling
Using Multi-view Images,” in Lecture Notes on Computer Science (LNCS) 3044,
Springer-Verlag, pp. 713-720, May 2004.

16. Ming-Te Chi, Tong-Yee Lee, ”Stylized and Abstract Painterly Rendering System
Using a Multi-Scale Segmented Sphere Hierarchy,” to appear in IEEE Transactions
on Visualization and Computer Graphics.

